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Abstract—Software bots fulfill an important role in collective
software development, and their adoption by developers promises
increased productivity. Past research has identified that bots that
communicate too often can irritate developers, which affects the
utility of the bot. However, it is not clear what other properties of
human-bot collaboration affect developers’ preferences, or what
impact these properties might have. The main idea of this paper
is to explore characteristics affecting developer preferences for
interactions between humans and bots, in the context of GitHub
pull requests. We carried out an exploratory sequential study
with interviews and a subsequent vignette-based survey. We find
developers generally prefer bots that are personable but show
little autonomy, however, more experienced developers tend to
prefer more autonomous bots. Based on this empirical evidence,
we recommend bot developers increase configuration options for
bots so that individual developers and projects can configure bots
to best align with their own preferences and project cultures.

Index Terms—Software Bot, Pull Request, Human Aspects

I. INTRODUCTION

Software bots can increase developer productivity [34], [52].
Perhaps this is why bots are on the rise in collective software
development [38]. Bots are used as front-ends for static analysis
tools, for security screening, and for development process
management, for instance closing stale issues. However, since
software bots are relatively new, we do not yet understand
the behavioral patterns that make developers accept or reject
working with bots. Existing research focuses on understanding
specific bots [29], characterizing bot types [45], [51] and bot
actions [34], [52] rather than on the human-bot collaboration
process. While it is known that bots irritate humans with too
frequent notifications [53], it is not clear what other features
of bot communication matter for developers.

In this work, we explore how specific bot behaviors affect
developer perception of bots, with the goal of supporting
informed designs for well-behaved software bots. We begin
with a broadly scoped exploratory interview study (Section III)
addressing the following research question:

RQ 1: What bot characteristics shape human perceptions of
bot behavior?

Our interviews identified the bots our respondents are famil-
iar with. We then probed the aspects of bot behavior the
respondents preferred. Respondents indicated that even for
bots performing highly useful tasks, certain aspects of the bot’s

behavior affected developer perceptions. Our interviews led to a
set of themes that highlight several important factors, including
the bot role (task), the degree to which a bot acts autonomously
(Autonomy), and the Persona presented by a bot. As bot roles
(Task) have been well-studied by Erlenhov [15], Wessel [51],
and others, we focused the second stage of this work on
Autonomy and Persona. Following an exploratory sequential
design [11], we formulated the second research question:

RQ2: How does the degree of Autonomy (resp. Persona)
influence a developer’s Preference for the bot’s actions in
a pull request discussion?

For this question, we conducted a survey using a custom
vignette-based instrument to evaluate the influences of the
two independent variables, persona and autonomy, on user
preferences (Section IV). Within the survey each vignette
presented the respondents with two nearly identical scenarios
shown side-by-side. The two scenarios showed respondents
a bot interacting on a pull request discussion in a software
project on GitHub. Critically, we varied the bot’s behavior to
contrast aspects of either autonomy or persona so that each side
of the vignette represented a different pole of the construct. We
then asked developers which of the two sides they preferred.

The key contributions of this study include:

o A set of themes, derived from practitioner interviews,
identifying key aspects influencing perceptions of human-
bot interactions.

o The identification and definition of the constructs of bot
Autonomy and Persona, along with a specific operational-
ization of those constructs.

o Evaluation of the effect of Autonomy and Persona, using
a custom-designed vignette-based instrument allowing to
increase realism and control for studies of bot behavior.

o A set of statistically validated models with quantitative
evidence for the preferences of developers for specific
bot behavior. Allowing us to conclude that developers
generally prefer reactive, personable bots.

o Actionable recommendations grounded in our empirical
evidence. Our recommendations set future directions on
the use of bot on software development activities. We
recommend that the the autonomy and persona of bots



should be fluid and left to developers to align according
to their preferences and tasks at hand.

Our findings open new avenues for research into how to
design bot personas for particular projects and how to tailor
them for different demographics of developers. They suggest
a focus on acceptable autonomy.

II. BACKGROUND AND RELATED WORK

Storey and Zagalsky [45] define a software bot “as a conduit
or an interface between users and services, typically through
a conversational user interface (UI).” Notions of interaction
and intelligence are a dominant theme in distinguishing bots
from other development tools [15], [55]. In fact, Erlenhov
et al. found that there are three different definitions used by
developers to define bots [15], based on whether developers
perceived their utility as primarily for Chat, to perform Smart
actions, or how they acted Autonomously.

Bots are widely adopted and seen as useful: both Wessel
et al. and Peng and Ma have found that the adoption of bots
by open-source software projects results in more pull-requests
being merged, leading to a more efficient division of work [52],
[34]. However, the introduction of bots is not without risks, as
Wessel et al. found that developers describe noise as a central
and recurrent problem when describing bots [54]. To counteract
this, Wessel et al. propose the usage of an automated moderator
that filters and aggregates bot actions [50]. While the work
of Wessel et al. focuses on the annoying behavior of bots on
social coding platforms, we are more specific, studying the
specific bot constructs that developers prefer bots exhibit.

Autonomy and persona are the two characteristics that
emerged from the interview study and explored further in
the experimental survey.

Autonomy. While some people may want highly autonomous
software bots, they are in the minority of software bot users
[15]. Seiffer et al. found that bots who are too autonomous
provoke skepticism from their users, as the users cannot trace
and manage the bots’ work [42]. This skepticism was also
found by Liao et al. outside of software engineering, where
professionals who experienced an automated personal assistant
were averse to a more proactive agent because of the risk
of interruptions [24]. When it comes to the evaluation of
automated assistants, Schaffer et al. found that self-reported
experience of professionals influences how willing participants
were to accept assistance from automated agents [40]. As there
are examples of highly proactive bots in software engineering
(e.g., Dependabot) we aim to understand whether developers
prefer reactive or proactive bots, as most existing literature
studies notions of autonomy outside software engineering.
Meanwhile, both the work of Erlenhov et al. [15] and Seiffer
et al. [42] does not evaluate the preference of developers in
an experimental set-up.

Persona. While many software bots communicate through text-
based conversational Ul, they do not have to take on science
fiction robots’ prototypical dry and analytical persona as Nass
et al. found that humans respond to computer generated cues
with social behavior [31]. Farah et al. found that software bots

TABLE I
INTERVIEW PARTICIPANTS DEMOGRAPHICS

Community ID Role Experience  Country

P1 Maintainer 4 Years India

P2 Newcomer 3 Years India

P3 Contributor 6 Years India
FOSSASIA P4 Maintainer 1.5 Year India

P5 Contributor 5 years Germany

P6 Maintainer 6 Years Singapore

P7 Maintainer 4 Years Sri Lanka
ROS P8 Contributor 12 years USA

P9 Contributor 4 Years India
Coala P10  Contributor 2 Years India

P11 Contributor 5 years Japan
RTEMS Community P12 Contributor 3 Years India

which harness humour in the form of puns appear friendlier and
more full of personality [16]. Furthermore, software bots which
display higher levels of anthropomorphism build more trust
with their human counterparts by creating a sense of familiarity.
This has been found both within software engineering [42],
[23], [35] and outside of software engineering [22], [9], [8].
However, it might not always be needed for bots to have higher
levels of anthropomorphism, as Clark et al. found that humans
still approach bots and interactions with bots as fundamentally
different from human interactions [10]. While we know that
anthropomorphic bots build more trust and appear friendlier it
has not yet been studied whether developers prefer bots that use
more personable language. Especially not in an experimental
set-up mimicking the interface of GitHub where developers are
shown a direct comparison between a personable and factual
bot and asked to indicate a preference.

III. PHASE I: PERCEPTIONS OF BOT BEHAVIOR

We implemented an exploratory sequential design [11] to
answer our two research questions. The qualitative phase
(interviews) produced themes investigated in the quantitative
phase (Sect. IV, surveys). In Phase I, described in this section,
interviews produced preliminary findings of human perceptions
of bots’ characteristics and behavior.

Phase I findings guide the design of the second phase
(Section IV). This design (Qualitative — Quantitative) allowed
us to draw grounded, reliable findings in Phase I. In the
second phase we used survey instruments and a larger sample
to broaden the empirical coverage, control for extraneous
variables, and test some of the earlier claims. Since there are
no clear theories about software bot behavior and developer
perceptions, we position the goals of the study as exploratory.

A. Interviewing Developers

We interviewed twelve open source software developers from
four communities in order to understand their perception of
bot behavior in open source communities and address RQ 1.

Sampling & Recruitment: We recruited participants for
our interview research via convenience sampling [33]. We
asked three FOSSASIA, ROS, and Coala maintainers to
assist us attract contributors and maintainers from respective



TABLE II
MOST SALIENT INTERVIEW QUESTIONS. Q1 AND Q2 WERE BRIEF
INTRODUCTORY QUESTIONS, NOT SHOWN HERE.

Core questions

Q3 - Are you using bots in your community? Have you used bots
before? For what purpose? How?

Q4 - Does it make a difference for you to deal with a Bot or a human
in the context of contributing to your community and how?

Q5 - How would you feel if a bot immediately rejected your PR?
Q6 - How would you feel if a bot immediately accepted your PR?
Q7 - How would you feel when a Bot submit a PR?

Q8 - How would you expect from a Bot to behave, concretely?

Q9 - What opportunities do you see for bots in your project/community?

Examples of probing questions

Q10 - Do you have an example [of bots in your community] you can
share with us?

Q11 - Would your attitude change in the review process [if a bot was
to accept the PR], for example?

Q12 - Have you had a similar situation [where a bot rejected/accepted
a PR]? Can you share it with us?

Q13 - What should the bot do to not annoy you?

communities. We have long-standing relationships in the
communities we chose, and we sought out to our contacts
to assist us recruit participants. We prepared an invitation to
participate, which was then sent to a group of contributors and
maintainers through two of our connections (FOSSASIA and
Coala). Instead, our ROS contact suggested possible candidates.

We contacted four possible ROS participants, and our
connections in FOSSASIA and Coala issued twelve and
ten invitations on our behalf to community contributors and
maintainers, respectively. We successfully interviewed one ROS
participant, seven FOSSASIA participants, and three Coala
participants. One individual is active in both the Coala and
RTEMS communities, but chooses to identify with the latter.

Participant Demographics: Table I highlights the demograph-
ics of our interviewees. The first column is the community to
which the participants contribute. The third column is their
roles in their respective communities (either contributors or
maintainers) and “Experience” is the accumulated number
of years they have been contributing to their communities.
“Country” is the country of residence.

Data Collection: To balance the need to obtain rich data
and to maintain focus during the interview we opted for
semi-structured interviews to collect Phase I data. We used
a predefined interview guide to semi-structure the interviews
(Table II), and prepared probing questions (e.g., “not annoy
you”) to trigger the participants to share further detailed
accounts of their experiences.

The aim of the interview study is to collect data based on
contributors’ and maintainers’ experiences using bots in their
respective communities’ pull request (PR) process. This is a
relevant source of data and the approach allowed access to

an emic perspective, points of view representing the meaning
people give to events, relationships, behaviors, and experiences.
Data collected through semi-structured interviews provide
insider information or knowledge about what happens in
practice and how people perceive the events around them,
which is difficult to obtain otherwise [47].

Table II documents key questions of the interviews. To avoid
socially desirable (i.e., providing responses that researchers like
to hear) [18] and abstract responses, we planned questions seek-
ing granular and detailed answers (e.g., Q5-Q8) prompting the
interviewees to share relevant accounts from their experiences.
The detailed interview guide is available in the replication
package (Sect. VII). We used Zoom, a virtual meeting tool,
to conduct the interviews. Upon the completion of an inter-
view, we transcribed the recording using Temi,! an online
transcription tool. We manually checked the recording against
the transcripts when the verbatim was unclear. The interviews
lasted on average 60 mins and the transcripts average 20 pages.
We obtained permission to make anonymized version of the
interviews available as part of our replication package. The in-
terviews were conducted between October and December 2020.

B. Coding Transcripts

Content analysis is the process of categorizing verbal or
behavioral data to classify, summarize and tabulate the data.
We opted for an inductive analysis approach [28]. It is often
used when there is limited understanding of the research
phenomenon. Inductive analysis aims at generating meanings
from the data collected in order to identify patterns and
relationships to build a theory. Our study used a two-step
analytical process as per recommendation [28].

Step 1: Developing Codes: In this initial phase of the coding,
we coded the data line-by-line, and we read the interviews
text interpretively using RQ I as an analytical lens. In parallel,
we assigned meaningful codes to segments of the text. The
outcome of this first step of coding is a codebook intended as
an input to the subsequent phase of coding. We used ATLAS.ti?
to ingest the transcripts and manage the codebook. The full
code list is available in our replication package (Sect. VII).

Step 2: Categorization of Codes: We identified patterns
among the codes identified in the earlier phase of coding, and
categorized them into themes. Using ATLAS.ti, two authors of
this paper performed the inductive coding approach described
above. In total, they conducted six rounds of developing codes
(Step 1). In the first three rounds, one interview transcript was
coded by each author with a discussion session performed
afterwards. In round four, no interview transcripts were coded,
however, the authors merged codes together and revised the
code list. In the fifth round, one author finished coding their
remaining interviews, with the other author doing the same in
the sixth round. After the sixth round, both authors categorized
the codes together to form the final code list.

Since during each round of this coding process debriefing
sessions were organized between the coders to discuss the

Uhttps://www.temi.com
Zhttps://atlasti.com



Theme (freq.) Definition

Evidence from the data

Attitude (104) How a human perceives bot actions

Does a human have to invoke/moderate a
bot

Autonomy (41)

Persona (67) Aspects of a bot’s character as perceived

by a human

Task (144) Tasks which a bot can perform

Feelings (28) Emotional response of a human evoked

by either a bot or a human

Project Norm (32) Implicit practices within an OSS project

Role (14) The role(s) a bot or human play within a

project

“So, it’s totally fine with me if the [bot] reviews and the bots review and say, you
know, this is not fine” (P10).

“.. if [a bot] just goes and tells you something’s broken, it’s not as good as if it can,
like, fix it for you” (P8).

“a bot is only as good as the automation it gives you” (P8).

“It [a bot] should be a little cool. Some sarcasm, some funny joke so to keep up the
energy and enthusiasm in development” (P3).

“the bot has been configured to automate the various tests. So, let’s say you create
a pull request, then what happens that depending on the dependencies, and the
CI/CD workflows of the of your particular project, whatever pull request someone is
making,...And they might be using some custom tests like Travis CI, so that is something
that these custom bots do it can run some tests that are being built particularly for
that particular organization” (P1).

“...in case if it is a bot [reviewing the PR] ...and he’s [sic] simply rejecting my PR,
then I will feel a little bad, and my perception towards that bot will actually change.”
(P3).

“RTEMS is actually a community that works over emails, as of now we don’t use bots”
(P12)

‘So, this bot can do [style checks]. It is time-consuming to ask the reviewer for his
review ... We can say the bot becomes one of the reviewers. ” (P2).

TABLE III

THEMES, THEIR DEFINITIONS, AND EVIDENCE FROM THE DATA

disagreements, resolve them, and come to a consensus on
the low-level codes, IRR measures are not applicable to this
constructivist and emergent process [1].

C. Findings From Phase |

The interviews provided a rich set of insights into how software
developers perceive software bots. Seven themes emerged:
attitude, autonomy, persona, task, feelings, project norm, and
role. Table III-B defines these themes.

The respondents identified that bots play significant roles in
their projects, being seen primarily as assistants. Bots have a big
influence on community perceptions and project norms, leading
people to feel different emotions, whether annoyed, discouraged,
or happy, among others. When we look at the attitudes behind
these feelings, the biggest were how independent the bot was,
and how it came across. Both autonomy and persona affected
the interviewees feelings and attitudes towards a given bot.

For example, “I've seen a lot of bots being very impersonal.
Like bots are programmed to be impersonal. I personally
don’t like that” (P6). Bots need to be accepted by the project
community in order to be effective, regardless of what they
can accomplish: “even though [the bot is] rejecting my PR,
that means he is able to understand what is a problem in my
PR, but it is not intelligent enough to write that problem in the
comment section and wait for the entire development” (P3).

In Phase 1 data, the themes of autonomy and persona seem
to evoke the strongest reactions amongst our interviewees.
For example, the lack of rational and factual explanations
subsequent to bot actions can have ramifications on how
the developer feels towards the bot’s actions. P3 expressed
disappointment if a bot would reject his PR with no justification
for such action. They stated: “in case if it is a bot doing the
task, and a bot is not commenting on what error I made, and

he’s simply rejecting my PR, then I will feel a little bad, and
my perception towards that bot will actually change” (P3). P9
expressed stronger action: “I think as a newcomer, it feels
a lot worse, because if it’s my first contribution and a bot
rejected me, I'm not contributing more to this project. I'm
done with this project (P9).

Similarly, too much autonomy takes joy out of the process
of contributing. For example, P2 and P6 explained that they
would not feel the same “joy” if their PRs were accepted by
a bot. They explained: “so, the thing with PRs is that you
get the joy of finally getting merged after a lot of suggestions
from the reviewers. And that joy is really not comparable for a
bot just merging it with any reviews.” (P2) and “I might have
probably been more happier [sic] if a human being accepted
my PR” (P6).

We concluded that autonomy and persona exert more
influence in shaping developers perception of bots. Hence,
in phase 2, we decided to focus on these two variables, leading
us to formulate RQ 2, to further our understanding of the
influence of autonomy and persona on developer perception
and expectation of bots in their pull request process.

IV. PHASE II: TESTING BOT PERCEPTIONS

We designed a randomized, vignette-based survey to explore
how autonomy and persona affect how bots are perceived
by a broader set of developers, i.e., how they influence the
dependent variable preference for how a bot behaves. Vignettes
are fictional scenarios in which a bot interacts with users
on GitHub and the interaction reflects (alternately) autonomy
and persona of the bot. This design addresses RQ2 and is
summarized in Fig. 1. A survey offers more control over the
questions asked and a broader pool of respondents. We opt for
vignettes experiments embedded in a survey, also known as a
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Fig. 1. Participant flow in the survey instrument.

factorial survey, rather than a traditional survey as it is supports
higher degree of realism, allows for systematically varied
descriptions, and feels less monotonous [44]. Vignette-based
surveys are an established sociological instrument introduced
by Rossi et al. in the 1970s [37] and recently used in software
engineering research [25], [27], [32], [39]. We discuss the
design, deployment and results of the survey below.

A. Target Population

The target population is software developers with knowledge
of pull request workflows. There is no obvious list comprising
a sampling frame of such a population [4]. We follow a non-
probabilistic purposive approach. While this threatens general-
izability, in our exploratory context we can use the respondent
characteristics in our inferences to explore differences. We
targeted Software Engineering third year undergraduates from
University of Victoria, a midsized, North American university,
and Prolific,’ an online participant recruitment platform that
provides researchers with access to participants around the
world with an internal screening mechanism.

B. Survey Design

The survey began with screening and demographic questions, to
ensure that the Prolific respondents are in the target population,
as recommended by Danilova et al. and Ebert et al. [12], [13].
The most salient questions are shown in Table IV and the
screening questions are in the replication package (Sect. VII).

We additionally screened for knowledge of programming
and knowledge of pull request based development (e.g., GitHub
account, pull request definitions). Incorrect answers on any

3https://www.prolific.co/

screening question meant we ended the survey for that respon-
dent. For Prolific, we returned the disqualified respondents back
to the Prolific Study page to complete the survey, as required
by Prolific for compensation. These questions were followed
by a random ordering of four short vignettes [27] representing
example bot actions in a GitHub pull request interface (shown in
Fig. 2). While the themes of autonomy and persona frequently
occurred in the interview data, for our survey vignettes we
needed to commit to a particular operationalization to create
constructs to represent those themes.

Constructs—Autonomy: We define two poles of the auton-
omy construct, proactive and its opposite, reactive, based on the
codes which emerged in our Phase 1 interview study. Proactive
bots can independently take action with no human trigger
within a repository. P7 explained: “... but when it comes to the
lightweight tasks, like doing some really small code changes
or some document changes ... Instead, we can automate those
tasks by bots” (P7). On the opposite pole, Reactive bots would
first have a human request assistance, e.g., the bot is manually
triggered by maintainers. The way in which the Repairnator
bot [30] independently opens pull requests on repositories is
an example of a proactive bot. A recent study of benchmarking
bots has identified four reactive and five proactive bots [26].

Constructs—Persona: We focus solely on the persona as
expressed by the bot’s textual utterances, leaving neutral the
visual appearance of the bot (i.e., we aim to have the bot present
a neutral avatar and name). We define two poles of the persona
construct. A Factual bot response uses no humanizing details.
It merely delivers the factual content of the message. P10
explained: “... so, the first thing is if something is correct, and
the bot approve it, and it should have a friendly language like,
Hey, you did this thing right, and it’s fine. And if something is
wrong, and then you know, if it rejects the pull request, ideally,
it will say me why I'm rejecting the pull request” (P10). P5
expected a bot to be completely factual; they stated: “a bot
doesn’t have any feeling or anything. It is just a piece of
software that’s telling you to do something” (P5). On the
opposite pole, a bot that exhibits a human-seeming persona we
term Personable. This bot uses informal and very enthusiastic
text. For example, P6 stated: “even some bots can have some
characters, right, either a small emoji at the end, that kind
of makes a big difference ... It just gives a little bit of a
human factor to the bot” (P6). For example, in Vignette 3 the
Personable bot first thanks the contributor for their pull-request,
and then mentions it is ‘valuable’.

Our final construct for the survey was the respondent’s
Preference for the bot’s behavior in a given vignette. Vignettes
were constructed to capture both poles of each of our two
constructs (i.e., Factual-Personable and Proactive-Reactive).
We left the interpretation of preference up to the participants
and used an open-ended response to characterize how they
justified their preference. We encode it as a ternary-valued
variable: prefer left, neutral, prefer right.

Survey Vignettes: Following the short-answer screening and
demographic questions, we presented vignettes. Vignettes are
fictional scenarios in which a bot interacts with users on



These two conversations differ by who starts them

Q) Conversation 2 Commits 1 Checks 14 Passedf@ Files changed

{i‘ BugFinderBot bot commented Feb 28, 2021

Patch synthesized successfully by BugFinderBot!

BugFinderBot has found a patch for this commit. BugFinderBot is a bot for automatic bug fixing, it has reproduced the bug and
was able to fix it.

o () Proposal for a patch 364629

TrishaOne commented Feb 28, 2021 Contributor

Thanks @BugFinderBot for the patch.

Turns out it was incorrect but thanks for trying.

Have a good day, my artificial software developer. :)

© QTrishaone added the status: invalid label Feb 28, 2021

) Conversation 3 Commits 1 Checks 14 Passedf@ Files changed

TrishaOne commented Feb 28, 2021 Contributor

@BugFinderBot generate patch for this commit

% BugFinderBot bot commented Feb 28, 2021

Patch synthesized successfully by BugFinderBot!

BugFinderBot has found a patch for this commit. BugFinderBot is a bot for automatic bug fixing, it has reproduced the bug and
was able to fix it.

o () Proposal for a patch 364629

Contributor

o

TrishaOne commented Feb 28, 2021
Thanks @BugFinderBot for the patch.
Turns out it was incorrect but thanks for trying.

Have a good day, my artificial software developer. :)

© @) TrishaOne added the ~status: invalid ~ label Feb 28, 2021

Please choose one of the answers below:

| Prefer the Left Side

Briefly explain your answer for neutral:

Neutral

| Prefer the Right Side

Fig. 2. Screenshot of web application showcasing vignette #1. User avatar has been redacted for privacy. Bottom shows the choice input and text entry for

rationale. Neutral is the default choice.

GitHub and the interaction reflects (alternately) autonomy and
persona of the bot. Each vignette represents a single pull
request discussion, extracted from existing GitHub examples
for verisimilitude.

We change the bot avatar to appear neutral, and change
names of the GitHub contributors to protect their privacy. We
also modify the vignette’s order of discussion and/or the bot’s
messages, to emphasize the construct (autonomy or persona)
under test. This results in two separate scenarios per vignette, as
shown in Fig. 2: on the left, for one extreme of the construct
(e.g., the proactive bot) and one on the right for the other
extreme (e.g., the reactive case).

Respondents were prompted with an indication as to what
is different between the two sides of the vignettes. We state
“these two conversations differ by who starts them” (autonomy)
and “these two conversations differ by the text used by [bot]”
(persona). We try to phrase this neutrally to avoid biasing
respondents to one side or the other. This prompting saves
respondents time hunting for differences that might only be
there accidentally, and focuses them on the construct being
studied. We ask the respondent to carefully examine each
scenario in the vignette and then indicate which they prefer:
Left, Neither, Right. Respondents were also required to write
why they preferred their chosen side of a scenario.

To ensure the two independent variables do not interact in the
vignettes, each vignette varies only in one of the constructs. For
example, in the right-most vignette of Fig. 2 the left and right
scenarios show a proactive and reactive bot interaction respec-
tively. Persona is fixed to factual in both sides. In this case, that

is easily done by ensuring the text used by the bot is identical
in each scenario. Table 1V, bottom, outlines this in detail.

C. Deploying the Survey

We sent out the invitations for this survey in different batches
spread out several days and timestamps as suggested by Ebert
et al. [13]. Participants were paid an hourly rate of 7.5£ to
complete the survey, even if they were screened out.

In total our survey received N = 56 valid responses (30
University of Victoria, 26 Prolific). We released the first
iteration of the survey in late February 2022. Of 69 invited
students from University of Victoria, 30 opted in to the survey.
300 Prolific users were invited to the survey over 4 different
iterations spread out over roughly one month. From the 300
invited Prolific users we screened out 274 participants that
failed to successfully complete the screening questions, leaving
us with a total of 26 valid Prolific responses. Such a screening
success rate (8.7%) is not uncommon in studies with a highly
technical target populations. This ensures valid participants.
Danilova et al. saw a rate of 25% for a simpler technical
question [12].

34 (61%) of the respondents were students. 19 identified as
female, 34 as male, 2 non-binary, and 1 did not disclose. 34
respondents were 18-24, 18 were 25-34, and 4 were 35 or older.
27 had 1-3 years of software development experience, 19 had
more than 3 years, and 10 had less than a year. 10 had previous
bot interactions. Only 6 could not define a software bot.



TABLE IV

SURVEY QUESTIONS AND VIGNETTES

Demographics

Answers

To which gender identity do you most
identify?

How old are you?

What is your profession?
How many years of experience do you have
in your profession?

Have you ever submitted a pull request to
any open-source project?

Have you ever reviewed pull requests on
any open-source project?

How often do you collaborate with reposi-
tories on Github, Gitlab, Bitbucket, etc?

Have you ever interacted with a bot in an
open-source project? if yes, please enter the
name of at least one of these bots.

What is a Bot? Briefly describe or provide
a definition.

One of: Male, Female,
None-binary, Other, Prefer
not to say.

One of: Under 18, 18-24,
25-34, 35-44, 45-54, 55-64,
65+

Open input.

One of: Less than one year,
one to three years, three to
five years, more than five
years.

One of: Yes, no.

One of: Yes, no.

One of: At least once a day,
At least once a week, At
least once a month, At least
once every six months, At
least once a year, Never.
Open input.

Open input.

Screening

Screening questions are included in the
attached replication package (Sect. VII).

Vignettes

Variables

Vignette #1: In this vignette the BugFind-
erBot generates a patch for a commit in
a PR. In the left scenario it generates the
commit autonomously, in the right scenario
it is manually triggered by a developer.
Vignette #2: The situation in this vignette
is similar to vignette #1, with the only
difference being the informal (personable)
writing of the bot versus the more factual
writing in vignette #1.

Vignette #3: A CLA bot responds to a new
user opening a PR by asking them to sign a
CLA. In the left scenario the bot is factual,
in the right it is personable.

Vignette #4: In this vignette a housekeeper
bot responds to a user opening a PR,
informing them of the house-rules of the
repository and letting them know that the
PR targets the wrong branch.

Variable: Autonomy, per-
sona is fixed to factual.

Variable: Autonomy, per-
sona is fixed to personable.

Variable: Persona, Auton-
omy is fixed to reactive.

Variable: Persona, Auton-
omy is fixed to proactive.

D. Descriptive Analysis and Results

To understand how Autonomy and Persona influence preference
(RQ 2), we begin with descriptive statistics of the results. We
then compare models for our independent variable of preference
based on different formulations of possible predictors (including
persona, autonomy, and GitHub activity).

Fig. 3 shows the overall choice distributions. Our respondents
preferred reactive, personable bots over proactive and factual
bots. If we split out the individual vignettes, as shown in
Table V, a slightly different picture arises. The pattern holds

Construct: Autonomy Construct: Persona
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Fig. 3. Summary of respondent choices across both vignettes, per construct.

TABLE V
VIGNETTE CONSTRUCT CHOICES.

Vignette  Construct  Count ‘ Vignette  Construct Count
Reactive 31 3 Factual 13

Neutral 6 3 Neutral 4

Proactive 19 3 Personable 39

2 Reactive 31 4 Factual 23

2 Neutral 10 4 Neutral 5

2 Proactive 15 4 Personable 28

for reactive bots, as in both Vignettes 1 and 2 a strong majority
prefer reactive. However, while in Vignette 3 there is a strong
preference for personable (39) over factual (13), in Vignette 4
this advantage weakens (28:23, respectively).

We also considered proxies for programming experience.
There are different ways of operationalising programming expe-
rience [43], and we consider several different proxies that might
provide complementary insights as to how more experience
might impact preferences: GitHub activity levels; pull request
experience; and overall experience (in years) programming.

Fig. 4 refines the analysis by conditioning on GitHub activity.
Our definition of activity is that Experienced GitHub users use
GitHub more frequently than once a month. Infrequent users,
although they have a GitHub account, use GitHub less than
once a year. Intermediate users fall somewhere in between those
extremes. Interestingly, experts prefer reactive and proactive
bots equally (Vignettes 1 and 2), while novices and intermediate
users prefer reactive bots more strongly (Fisher’s exact test,
p=0.015, a=0.05). Liao et al. [24] similarly found that expert
users are less likely to accept input of automated agents, and
are wary of proactive automated agents for fear of interruptions.

Also relevant is bot experience. We asked participants to de-
fine a bot, and if they had interacted with at least one bot on an
open-source project, to list at least one, in Table IV. 10 respon-
dents gave some bot examples, and 44 did not answer this non-
required question. 6 respondents gave a definition of bot which
indicated they were unsure. If participants defined bots clearly,
we listed them as having moderate knowledge of bots (40/56).
If they also listed previous bots they had interacted with, we
classified them as experienced with bots (10). The remainder
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we categorized as inexperienced (6). The overall pattern holds
across bot experience (prefer Reactive and Personable). There is
no effect of bot experience on Autonomy preference (p=0.27,
«=0.05) in our data. There also does not seem to be any
particular pattern based on a respondent’s pull request activities.

E. Explaining Choices With Open-Ended Answers

To better understand how respondents evaluate autonomy and
persona we open-code their rationale for their preference
(bottom of Fig. 2). Three authors of the paper independently
coded the open answers of the respondents in three rounds,
and after each round the coders discussed their conflicts to
increase shared understanding of the coding task and improve
the coding guide. We had substantial inter-rater agreement of
k = 0.723 by the conclusion of the final round. This resulted
in five high-level codes, each with two sub-codes representing
opposite polarities (Table VI). Code frequencies are shown in
parentheses. We also included a code for comments stating
that they have no preference, or for noise/unusable data.

Respondent justifications for preferences were most often
because the bot had a Clear message (41 occurrences), the bot
was Polite (40), or the message was Information Rich (19).
For preferences about bot autonomy, there was an even split
between Bot-Initiated (30) and Human-Initiated (41) control.
The open-ended answers showed that our constructs were
indeed what participants were reacting to, and echo the themes
from the Phase 1 interviews.

F. Bayesian Analysis of Quantitative Data

We use Bayesian Data Analysis[19] to explore possible
influences on subject preferences, following the example of
Furia ef al. [17] and the guidelines of Torkar et al. [46]. In
a frequentist setting we would not be able to find what are
possibly small effects with a sample size of 56. However,
Bayesian analysis yields valid predictions even with less data,
albeit with the addition of a (in our case, weakly informative)
prior probability distribution [20].

TABLE VI
OPEN CODING RESULTS FOR THE OPEN-ENDED QUESTION ON RATIONALE.

Code Polarity Definition
(freq.)

Noisiness Noisy (4) /  The bot clutters the conversation by sending too
Clear (41) many messages or pinging developers frequently,

OR messages are clear, short and easy to under-
stand.

Persona Polite (40)/  The bot is friendly and the language used by this
Rude (7) bot is similar to human conversation OR The

bot does not care about human feelings in their
messages and actions.

Control Bot- (30) The bot is in control, initiates actions, and is
/ Human- accountable for these actions OR The developer
initiated is in control of the bot, initiates it, and is
41) responsible for the bot’s actions

Productivity Boosts (2) /  The bot is efficient and improves the workflow
Hurts (1) by saving time and resources OR The bot is

inefficient, consuming resources and wasting time
The bot is configured to provide enough infor-
mation for the assigned task OR The bot does
not produce useful information

Information Rich (19) /
Content Poor (1)

Causal Model and Associated Statistical Models: We created
a causal graph [36] to model the relationships between themes
from our interviews (Section III-B). A causal model is a
Directed Acylic Graph (DAG) in which arrows reflect a causal
relationship (an influence) between variables. Our causal graph
is available in our replication package. The model captures
that BotExperience, GitHubActivity, and PRActivity influence a
preference for degree of Autonomy and Persona style. A hidden
node captures other, unmodeled sources of variation.

We codify Preference with the variables Vignette-
Choice_Autonomy and VignetteChoice_Persona. The treatment
effects “causing” these choices are the AmountOfAutonomy
and AmountofPersona. That is, we model the probability of a
respondent’s choice (in our instrument “Prefer Left,” “Neutral,”
or “Prefer Right”) in the Vignettes of Fig. 2.

We derive ordinal regression models [7] from the causal
graph and outline three instances in Table VII. In the table,
a tilde should be read as “dependent variable (left side) is



explained by independent variable interactions” (right side). We
create 3 models for each of the four vignettes (12 total models).
The table reflects phrasing for models for the Autonomy
vignettes (1 and 2), but similar expressions are used for Persona
(Vignettes 3 and 4).

Model M, is the simplest. It assumes that the level of
GitHubActivity alone is a sufficient predictor in each of the
vignettes. Model M5 adds expertise with PRs, bots, and overall
software development experience, to check whether these
increase the strength of explanation. Model M3 checks whether
the responses are correlated across vignettes for independent
constructs (e.g., whether one’s choice for Autonomy influences
choice for Persona, and vice-versa).

The goal of the analysis is to find a model that best explains
the data with the fewest predictors. Adding more predictors
to the model raises the risk of over-fitting (biasing) to the
collected data and reduces our ability to explain more general
phenomena. We then compared the explanatory power of our
different models. The more a model can explain the data, the
more indicative that is of potentially important effects.

G. Quantitative Analysis Results

We follow the guide of Biirkner and Vuorre [7] to perform
inference. A cumulative/continuous response ordinal model
of a latent parameter Yautonomy (I€Sp. Ypersona) models the
user’s general preference for an aspect of bot behavior. The
latent continuous variable Y is partitioned into the three
responses, “reactive,” “neutral," “proactive” (resp. “factual,”
“neutral,” “personable”). The intuition is that a partitioning
properly treats the data as ordered categories rather than a
continuous metric response, and the most likely partitioning is
found using Bayesian inference.

Conditional Effects From the Posterior Distribution: Pos-
terior inference in the three models finds the distribution of
regression parameters (the R scripts for the analysis are found
in the replication package, Sect. VII). Following the Bayesian
workflow of Gelman et al. [21], elaborated for software research
by Torkar et al. [46] we use a model comparison approach that
focuses on building an adequate explanation for the observed
data that can be useful in answering questions, doing decision
analysis, or making predictions. It does not imply it is the best
possible model, just one that given the various factors in our
causal model, best explains (‘is least surprised by’) the data.

The posterior distribution, produced by the inference proce-
dure, allows us to evaluate the probability of a particular choice
in our vignettes, conditional on some independent variable.

TABLE VII
CANDIDATE MODELS FOR AUTONOMY PREFERENCES

Model Number  Statistical Model

My VignetteChoice_Autonomy ~ GitHubActivity

Mo VignetteChoice_Autonomy ~ BotExperience +
GitHubActivity + PRActivity + Experience

M3 VignetteChoice_Autonomy ~ VignetteChoice_Persona

Model | Vignette LOOIC SE | Vignette LOOIC SE
M 1014 8.7 117.8 9.1
Mo V1 116.2 12.1 V2 120.5 12.2
M3 111.9 8.7 119.4 7.6
My 95.5 11.2 112.3 10.8
Mo V3 115.7 14.1 V4 127.6 7.3
Ms 87.6 10.6 111.1 7.7

Fig. 5. Comparing models using Leave-One-Out Information Criterion. Lower
values are better. SE is standard error. Model 1 is preferred for vignettes 1
and 2 (autonomy), while Model 3 is preferred for vignettes 3 and 4 (Persona).

Our objective is to explore how independent variables might
influence our dependent variables, if at all.

The inference process generates a posterior predictive
distribution, one of the most useful differences with other
inference approaches. Here, we can use the posterior to ask
questions about the models. The conditional effects plot in
Fig. 6 shows a sample from the posterior. The x-axis captures
one of the predictors in the model, in this case the amount of a
respondent’s GitHub activity (experienced, infrequent, interme-
diate). On the y-axis we show the probability of the response
categories, that is, of choosing either Proactive (blue dots),
Neutral (green dots), or Reactive (red dots) in Vignette 1. Error
bars capture the 95% credible intervals from the model (i.e.,
of the samples drawn from the posterior, 95% fall within the
error bars). The dot represents the mean of the samples taken.

In this vignette M; shows that intermediate and infrequent
GitHub users are more likely to choose reactive (blue/rightmost
means), while experienced users are more likely to choose
proactive bot actions in the Vignette. Overlapping error bars
indicate lower confidence in the probability of the choices of
the experienced users, however.

Model Comparison with LOOIC: We can also use infor-
mation criteria and leave-one-out validation (LOOIC, [48]) to
approximate the likelihood of the held-out data based on the
observed data and quantify which model is most informative.

A lower LOO Information Criterion score (LOOIC) indicates
that the model is a better fit for the data [17]. The relative
differences of the score for different models of the same data
can be compared. Where LOOIC scores are less than an integer
multiple of the standard error, other factors such as our domain
knowledge (i.e., how likely is a predictor to influence the
result) and model parsimony (fewer predictors are preferred
over more) are also important.

Our model reflecting prior experience with software develop-
ment or bots (Ms) was less informative, with wider margins
of error, as shown in Fig. 5. Choices on the Persona construct
(Vignettes 3 and 4) were more likely to be influenced by
choices on Vignette 1 (i.e., whether respondents preferred the
reactive or proactive bot actions).

Indeed, returning to RQ 2, the inferred model confirms
that inexperienced developers prefer reactive and personable
bots. This is consistent with reports elsewhere that that
inexperienced developers perceive bots as automated, smart
procedures (Erlenhov’s Sam persona [14]). The models lend
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evidence to our insight that experienced developers prefer
more proactive, factual bots.

V. DISCUSSION
A. Autonomous Bots and Developer Perceptions

Users and professionals seem to be wary of proactive
agents [24], [42], [40]. Wessel et al. highlighted that overzeal-
ous bots in open-source are perceived by developers as
noise [54]. Our study found that more experienced developers
are more inclined to prefer proactive bots compared to the less
experienced developers. The reasons given by our participants
only rarely include Wessel et al.’s notion of bot noise or
interruptions. Instead, the developers confidence in (or tolerance
for) proactive bots seems to grow as developers become more
experienced. Conversely, less experienced developers may find
proactive bots either too intimidating or assertive. Our study
shows that not only should bot creators decide how their bots
should be configured, but also reminds us that the developer
is and remains central to the development process. Tools
which assume otherwise may see little adoption. Therefore
we propose that tuning the levels of bot autonomy depending
on the developer’s level of experience should be considered in
bot design. Therefore, we propose:

Recommendation #1: Developers should be given options
to scale the autonomy of the bots involved in their devel-
opment process. For instance, they could choose between
Proactive and Reactive.

Developers might also choose between bots with which they
feel comfortable (such as Dependabot, which e.g., P10 found
“very useful”) and those they prefer to mute. However, this
tuning should be based on developer preferences, as captured
by our survey and that of Erlenhov et al. [15]. Therefore,

Recommendation #2: In order to tune bot behaviors,
projects must have a better way of getting feedback on
bot behavior and developer preferences.

One way to do this is to capture developer reactions to bot
comments, e.g., using a thumbs-up emoji.

B. The Importance of Bot Persona

The language used by bots shapes how bots are perceived
by their users [10]. Volkel er al. found that users of bots
might be more likely to accept bots that reflect their own
personality [49]. Our findings show that developer preference
for persona depends on the specific context of a vignette. The
practical implication is that persona matters and should not be
an afterthought. Developers should be given options to influence
the persona of the bots involved in their development activities,
especially since it is known that bots which display higher
levels of anthrophormism build more trust with developers [42],
[23], [35]. Developers could for instance select a persona from
an array of predefined personas and styles of communication.
For example, some interviewees would rather have a bot stick
to the information in the message and skip non-informative
utterances. Based on these insights, we propose:

Recommendation #3: Developers should be able to se-
lect and change the persona of a bot based on their
own preferences.

Future work should look at how other factors influence devel-
opers preference for bots’ personas. For example, open source
project particularities could be used to guide the design of pre-
defined personas inline with community preferences. Alami et
al. [2], [3] found that open source communities PR governance
process tend to align to three distinct but not exclusive styles
of governance: lenient, equitable, and protective. Different
bot persona styles that align with community styles could be
investigated as potential default choices for contributors.

C. Broader Themes in Bot Interactions

Our study focused on the key themes of autonomy and persona,
and implies that there should be more bot configurability and
awareness of developer perceptions. There are other dimensions
to developer preferences on bots, however. Emerging in our
interviews and survey responses were themes around trust, past
bot experiences, appearance, and identity. To further understand
the roles bots play in software development these themes
need more extensive study. As complex interactions between
software bots and developers expand, a broader set of theories
and results around behavior, trust, and language will be needed.
The notion of social norms from Bicchieri [5], Searle’s speech
acts [41], or politeness theory from Brown and Levinson [6],
are some examples which make this area a fruitful one for
transdisciplinary research.

VI. TRUSTWORTHINESS AND VALIDITY OF FINDINGS

Trustworthiness: Trustworthiness assesses the validity of our
qualitative analyses and conclusions.

Credibility & confirmability. We used robust labeling with
multiple authors and clear guidelines to reduce bias of a single
labeler. We reported earlier on rater reliability for our coding
of the survey responses.



Our sampling technique in Phase I might be seen as a
potential weakness of our study. Participants for the interviews
were found via referrals and word of mouth. As a consequence,
it is feasible that our sample may skew the Phase I findings.
However, our mixed-methods approach addressed this weakness
somewhat; in Phase II, we surveyed a wide sample of people
from a range of experiential, and national backgrounds.

Dependability. Our codebook and the anonymized transcripts
and answers are available in our replication package for
reliability checks of our findings.

Transferability. We consider we have met the transferability
standards by demonstrating that the study results might be used
in other comparable circumstances (i.e., free and open source
communities). A replication package that is thorough enough to
enable other researchers to duplicate a comparable investigation
is provided. We also assured transferability by properly defining
the study, explaining the participants’ various experiences,
executing methodology, and evaluating the outcomes in a
quantitative phase with a broader sample.

Internal Validity: We piloted the survey with three members
of our lab. Designing the survey involved trade-offs. We
randomized the order of the vignettes per participant, and
we kept some questions simpler than might be desirable, in
order to reduce experimental bias such as fatigue. We changed
the context of each vignette to ensure there was no learning
effect. We keep the amount of text approximately the same
on both sides of a vignette. We checked correlation between
vignette choices to ensure vignette choices were correlated on
the same construct, but not correlated between constructs.

In both Vignette 1 & 2 the bot’s PR is rejected. This
failure might have influenced how developers prefer or perceive
acceptability of the autonomous bot. However, we did not see
any mention of the bot failure in the justifications provided
by respondents for preferring the reactive bot. In our Bayesian
modeling, we might have too few novice samples to draw on,
resulting in lower model efficiency. This is apparent from the
larger standard error for these categories.

Construct Validity: Our findings were based on operational-
izations of the constructs of persona and autonomy, mapped
onto the developer’s preference for a bot’s behavior. These are
complex and often personal constructs. Our operationalization
of these constructs necessarily excluded some of this complexity
(a necessary trade-off for more control). Our open-ended
questions were an attempt to allow respondents to express
this complexity.

To measure preference we asked respondents to indicate
which scenario within a vignette a respondent preferred.
By showing scenarios side-by-side respondents could easily
evaluate which pole of the construct shown in the two scenarios
they prefer. Additionally, we asked for open-ended justifications
to ensure we understood the rationale behind their preference
and from the open-ended answers we conclude that respondents
state similar reasons as the constructs under test. We had mixed
results with Vignette 4 which might reflect poor phrasing of
the interaction. Tuning a bot’s persona between factual and
personable is a balancing act. For the modeling we assume

that preferring one side is equivalent to not preferring the other
side, i.e., there are no category-specific effects.

External Validity: Survey respondents were carefully
screened for basic software development knowledge and pull
request use. In addition, our survey samples were drawn from
self-described software industry professionals (Prolific), polled
at varying times, as well as third year software engineering
students. The usage of screening questions and using several
Prolific iterations is in line with current recommendations [13],
[12]. There may be a bias in the people willing to enroll in
Prolific studies, and we did not have many participants who
were older than 35 or with more than 5 years of experience.

VII. CONCLUSION

This paper examined the factors influencing developer percep-
tions of GitHub bots. We began with an interview study to
elicit some important themes in how projects and developers
use and perceive software bots. From this two important
constructs emerged, which influenced perceptions: the degree
of Autonomy a bot exhibited, and its Persona. A vignette-
based survey allowed us to control other aspects and explore
how respondents reacted to bots in a simulated PR discussion.
Participants with less software experience generally preferred
reactive, less autonomous bots, but tolerated friendly personas.
Bot development for software projects should make these two
aspects of bots more configurable. Better understanding of
project and developer interactions is important for making full
use of bots.

Replication Package: We made the study’s data and other
artifacts* openly available. For Phase I, we shared the full and
detailed interview guide, anonymized interview transcripts, and
the result of the data analysis, i.e., codebook. For Phase II, the
survey design and data.

Human Research Ethics Review: The study, including the
power-over relationship with students, was approved by the
relevant institutional review boards of the researchers involved.
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